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Abstract

The usefulness of piecewise polynomials with C I and

C 2 derivative continuity Ior response surface

construction method is examined. A Moving Least

Squares (MLS) method is devuloped and compared

with four other interpolation methods, including

kriging. First the selected methods arc applied and

compared with one another in u two-design variables

problem with a known theoretical response function.

Next the methods are tested in a four-design variables

problem from a reliability-based design application. In

general the piecewise polynomial with higher order

derivative continuity methods pr_duce less error in the

response prediction. The MLS method was found to be

superior for response surface construction among the
methods evaluated,

Introduction

Structural reliability engineering analysis involves

determination of probability of structural failure taking

into account the uncertainty in the geometric
n

parameters, material properties and loading conditions.

The uncertain quantities arc treated as random variables

with known probability distributions in probabilistic

analysis. In these analyses, fo+ each set of random

variables a Monte Carlo simulation is performed to
2

determine the probability of failure of the structure .

Monte Carlo simulations requirc large number of

simulations and hence, are computationally expensive

and also require large amounts of analyses time. In

order to alleviate some of the problems associated with

Monte Carlo simulation, approximate methods such as

First Order Reliability Method (FORM) and Second

Order Reliability Method (SORM) were developed to
2

minimize the number of simulations . Even with these

approximate methods, the computational effort required

to perform a structural reliability analysis can be very

high. Thus, there is a need to develop methods that are

accurate and yet minimize the computational time.

Response surface functions arc often used as simple

and inexpensive replacements for computationally

expensive structural analyses in reliability methods. In

the response surface method, a surface is fit to

interpolate data that are generated by performing

structural simulations at selected points in the

parameter space. The response surface is then used to

evaluate the structural response at other points in

parameter space. For example, the polynomial
3

regression response surface method is widely used in

structural optimization. The number of data points

necessary to fully sample the parameter space increases

exponentially as the number of random variables or

design variables increases. In theory it is possible to

find an interpolating polynomial of sufficiently high

order to pass through all the data points in the

parameter space. However, for such interpolating

polynomials as the number of data points increases, the

surface generated tends to exhibit oscillations or

wiggliness" between the data points. For this reason the

polynomials are generally limited to first and second

order to represent the response surface, and Least

Squares regression is used to best fit the data points

Many other methods use piecewise polynomials instead

of a single global polynomial to represent the entire
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parameterspace.The piecewisepolynomialsarc
generallylimitedto C o continuous surfaces. In C o

continuous surtaces, the function values are continuous

everywhere (across piecewise polynomials), but first

derivative (slope) continuity and higher order

derivative continuity are not guaranteed. Recently

Romero el al. 4"5 implemented a Progressive-Lattice-

Sampling [PLS] method based on finite element

interpolation (C oglobally continuous) to construct the

response surfaces. However, response surface

construction methods using piecewise polynomials with

C I continuity (function values and slopes are

continuous) and with C 2 continuity (function values,

slopes and second derivatives are continuous) are rare
in the literature.

The purpose of the present paper is to study the

usefulness of piecewise polynomials (with higher order

derivative continuity) on response surface generation

and its application to reliability engineering. The

Minimum Norm Network (MNN) developed in

references 6-l0 adopted to construct a response surface

with C 1 and C 2 continuity in two design variables. A

new enhanced C2MNN method is developed to

reproduce polynomials up to third degrees exactly.

Also a Moving Least Squares (MLS) method is

developed to reproduce C I and C 2continuous

response surfaces lbr arbitrary number of design

variables. The selected interpolation methods are tested

in a two variables problem and results are compared.

Finally a four-variable example from a reliability

application" is presented to demonstrate the
effectiveness of the MLS method. The MLS method is

compared with least squares polynomial and the kriging

methods on this problem.

Interpolation Methods

The accuracy of the response surface in representing

the behavior of the actual system largely depends upon

the interpolating method used for its generation. Brief

introductions to the five interpolating methods used in

the current analysis are presented in this section.

1. Global Least Squares Method (GLS)

The GLS methods are generally known as polynomial

regression methods and are widely used in the literature

[3]. The GLS methods are used to create response

surface functions from a set of sampling points. For

example, a quadratic polynomial with NOV design

variables has the form

NDI" NI)l"

._,(X)=a0+ Za/X/+ Y_ b,IX, X I (1)
/=1 I=lJ= t

Where ._ is the approximated value of the target

function at the point in the parameter space having

coordinates (XI,X 2 ..... XNZ_t.), and a0,aj,and b,/ are

the unknown constant coefficients. The unknown

coefficients are determined by a regression procedure.

Most commonly, the method of least squares is used to
determine the coefficients that minimize the error of the

approximation at the sampling points _. Since a single

polynomial is used to represent the entire parametric

space, the method is termed here as the Global Least

Squares (GLS) method. In the present study, the GLS

method is limited to the quadratic polynomial given by

Equation (1).

2. Kri_ine

Kriging is an interpolation method that originated in the

geostatistics community. Kriging uses the properties of

the spatial correlation among the data samples. In

arriving at an interpolated value at some point in the

parameter space, kriging more heavily weights data

samples that are "nearby" rather than giving all data

samples equal weight. This is achieved by setting mean

residual error to zero and also minimizing the variance

of the errors. The final equations for kriging are given

below from reference 12 for N sampling points

and NDV design variables:

The estimated value of y in kriging is obtained from

V= fl+rZ R-I(Y-#) (2)

where Y is the column vector of known function

values at the N sampling points, /_ is a constant to be

determined, R is correlation matrix obtained for an i 'j'

row and ./.,h column from the correlation function as

NDI'I t ] 2]

R(X',X -j)=exp[-O Y', A"k -Xk ] (3)L ,{'=

F

from

is the column vector of length N obtained

r' = {R(X,XI),R(X,X 2) ..... R(x,xN)} r (4)

2
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and f is vector of length N, "aill+ all elements in the

vector set to unity as

,r_ = {t,u .......ip (5)

The unknown k in Equation (2) can be obtained from

/7 = (f] R-i f)-i fT R-I) ' (6)

The Maximum Likelihood Esliinate (MLE) for the

unknown quantity 6/ in Equations (3) is obtained i'rom

a one-dimensional maximization iwoblem defined by

(Y - _f )r R-i (Y - flf )

N
(8)

Estimation of 0 in the one dinlensional optimization

problem is the critical step in the kriging method. The

kriging method used in this study produces a C 2

continuous interpolating function over the entire

parameter space.

3. Minimum Norm Network (MNN):

The MNN method is a piecewisc interpolation scheme

that can produce C t and C 2 continuous surfaces.

Complete details about the method can be found in

references 6-10, only a brief description of the method

is presented here. The MNN method requires the

function values at the arbitrary sampling points. The

procedure to construct a MNN can be described in the

following three steps:

I. The given sampling points are triangulated

such that each point lie,, at a vertex of the

triangles.

2. The derivatives are generated at the vertices of

the triangles from known function values. On

each edge of the triangles an interpolating

polynomial is fit in terms of the known

function values and unknown partial

.

derivatives at the vertices. The unknown

partial derivatives are determined by enforcing

continuity of all edges meeting at a vertex by

minimizing a functional (second order for 2

parameters). The union of all the edges of all

the triangles lbrms the MNN network. At the

end of the second step, function values and its
derivatives are known at the vertices of the

triangles in the network.

The interpolation is extended inside the

triangles in terms of the function values and its

derivatives at the vertices of the triangle. The

interpolation inside the triangles is achieved

using triangular blending functions forming a

piecewise continuous surface. The blending

function is constructed in such way that it

produces C I and (,2 continuous surface with

its neighboring triangles.

A response surface with C i and C2coniinuity is

produced using the method developed in references 6-9

and used for the interface element development in

reference 10. The MNN from reference 8 produces a

C 2 continuous surface in the limit. Hence, a new

"enhanced C 2 "" method is developed here to produce

C 3 continuity (partial derivates up to third degrees

continuous) in step 2 of MNN network and uses the

same blending function as thai of C 2 in step 3.

At present the MNN method is available only for two

design variables (dimensions). Extending the MNN to
more than two variables is difficult. However, these

methods are included in this study, since, Ihey are the

only methods that provide piecewise polynomial

interpolation. Also these methods can produce a

C:coniinuous surface that passes through all the

sampling points for arbitrarily oriented data points (i.e.,

not in a structured grid).

4. Moving Least Squares Method (MLS):

The Moving Least Squares (MLS) method is widely
13,14

used in meshlcss methods . Recently the MLS

method has been successfully applied for response

surface generation in the context of optimization in

reference 15. A MLS method is developed here for an

3
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arbitrarynumberof designvariables.Themethodis
brieflydiscussedhere:

TheMLSapproximationfortheestimatedvalue_,(x)
canbewrittenas

{,{X}=p'{X}a,,,(X) (9)

where p'{X}=[p, IX}.p._{X}....p.,{X}] is a
polynomial basis lunction of order m used in the MLS

interpolation, am(X) is a vector containing coefficients

a/(X), ./"= 1,2 ..... m, which are functions of the spatial

coordinates. For example, for two design variables,

p_ IX}= [I.X, ,X 2 ]_ Linear basis function; m = 3

p' l.vl=

Quadratic basis function; m = 6

(10)

The unknown coefficients a,, can be determined using

the weighted least squares error norm J(X) at the N

sampling points

N [PT'(X,)a,,,(X)- YIJ(X) = Zw,(X) (I I)
t=l

:[Pa,,(X)- Y]i .W.[P a,,(X)-Y]

where wi(X ) is weight function associated with node

i. whose value is nonzero only in the support or

influence domain of the node X i ( usually a sphere of

radius R, ). The matrices P and W are defined as

[ P_ (XI) ]

Lp'

(12)

u, l(._') ... 0 [
0 "" WN ('¥) N × N diagonal mamx

(13)

(14)

Minimizing the norm J(X) in Equation (10) with

respect to am(X) leads to the following linear relation

between am(X ) and y

A(X) am(X ) = B(X) Y (15)

where the matrices A(X)and B(X) are defined by

N

A(X) = P_WP = Y.w,(X) p(X,) p_ (X,) (16)

B(X) =pTw
=[wI(X)p(XI) w2(X)p(X 2) --- WN()t')p(XN) ]

(17)

The unknown coefficients am(X ) can be obtained by

solving Equation (15), which results in

am(X) = A-_(X) B(X) Y (i 8)

Substituting the unknown coefficient from Equation

(18) into the Equation (9) leads the MLS interpolation

of the _' as

._,= pT (X) A-I(X) B(X) Y (19)

The MLS approximation given in Equation (18) is well

defined only when the matrix A is non-singular. This is

true only if there are at least n sampling points in the

influence domain of a node X, such that n > m. For

example, for a one-dimensional case with a linear basis

function (m = 2). the value of n should be > 2. For a

quadratic basis function in a two-dimensional case the
value of n should be > 6.

Except for the weight functionw,(X), all other

quantities in the MLS approximation are well defined.

As already mentioned, the weight function is non-zero

only in the influence domain of a node i, and equal to

zero outside the influence domain. In the present study,

the influence domain is assumed to be of a sphere with

radius /,. The radius l, must be large enough to

contain at least m nodes in each direction of the

parametric space. The weight function is selected such

that its value goes from unity at the center of the

influence domain to zero at the boundary and outside

the influence domain. This property of the weight

function makes MLS a local approximation compared

to the GLS approximation traditionally used to

represent the entire domain by a single function. It may

4
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be noted that in the MLS method for every new

interpolation point ();) Equation (18) is formed and

solved.

In this paper, three spline functions with CI,C 2, and

C 3 continuity are used as weight function

For Cl:

w,(x) =,

,., 2 3
l-_,p, +2p, 0_<,q, _1

0 ,q,>l i
(2O)

For C 2

r_)(x) =I1-10p_ +lSp ? -6,o, 5
/ 0

(21)

For (,3

w,(x) = {1 -35p, 4 +84P_o-70pi'
20p,' O_<pi >1

P, >li

(22)

IX, -X I
where p,- is the norntalized distance, from

1,
the center of the influence domain (X,) and a general

point X.

The smoothness of MLS approximation is controlled by

both the weight and basis funclions. The precision

(continuity) of MLS interpolation will be equal to the

minimum precision of the weight and basis function.

5. Piecewise Finite-Element (FE) Interpolation

Piecewise finite element (FE) interpolation was
4

originally used in conjunction with Progressive Lattice

Sampling (PLS). PLS is discussed later in this paper.

The arrangement of samples in each PLS Level allows

the parameter space to be subdivided into a regular
pattern of adjacent polygons, which for, two-

dimensions, results in triangular and quadrilateral finite

elements. For the 2-D parameter space, a combination

of 3-. 4-, and 6-node triangles and 9-node quadrilaterals

exist at the various PLS Levels. ].,_w-order polynomial

interpolation is applied over each element. The

collection of all the elements together creates a locally

compliant C o continuous function over the parameter

space. A detailed discussion of the implementation of

the FE interpolation technique used here is presented in
reference 4.

Level-1 (3 samples)

Level-3 and 4 (+4=9)

...+ .........._...-..

Level-6 (+ 12=25)

Level-2 (+2=5 samples)

1- -i

Level-5 (+4 = 13

.-

Level-7(+ 16=41 )

Figure 1. Progressive Lattice Sampling Points

Progressive Lattice Sampline (PLS) Experimental

Desig.n_:

The selection of sampling points plays a major role in

the accuracy of a response surface. There are many

schemes available in the literature (sec reference 3).

Romero et al.' used Progressive Lattice Sampling

(PLS) incremental experimental design sequence as

shown in Figure I for two variables X I and X 2. In

this example, the square represents the parameter space

of X I andX 2 . Level I of the design consists of three

samples, with one sample in the center of the parameter

space and two other samples along the boundary. For

n parameters, Level I requircs n+ I samples. Level 2

adds n samples to complete a 2n+l "'simple-

quadratic" layout. Level 3 adds a 2" factorial design.

5
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Level4 addsa Box-Behnkendesignto completean
overall 3" full factorialdesign.(In2-D,Levels3and
4havethesamelayout.)Level5addsasub-scaled2"
factorialdesignasshowninthefigure.Level6addsthe
appropriatesamplesto completea 5" full factorial
design.Level7 addsa sub-scaled4"full-factorial
designin theinteriorof theparameterspaceasshown.
Thestrengthof PLSisthatit providesanefficientway
to addsamplesitesthatleverageprevioussamplesso
that uniformdistributionof the samplesover the
parameterspaceismaintained.ThePLSdesignpoints
will beusedassamplingpointsin all thefittingand
interpolationschemesinthepresentstudy.

Application Problem

Two-Variables Problem:

First the described interpolation methods are applied to

a two-design variables problem selected from reference

4. Target response function tor the two-variables is

shown in Figure 2

|

|

Figure 2. Target Response Function for Two-
Variables Problem

This response function is defined as:

response( X I, X 2 )

= [0.8r + O.35Sint _2 t][1.5Sin(1.30)]

(23)
on the domain 0 <_-k't < 1, 0 < X 2 < 1

with r=_U-_+ X_,O=arctanI X21
- kxtJ

Exact data values of this function are obtained at the

PLS sampling points shown in Figure I. The response

surface is generated for each of the various PLS levels

in Figure 1. The response surface is then used to

interpolate the value at any other point.

To examine the fitting performance (within the PLS

frame work) of the various response surface

construction methods, a global measure of average
error is defined as follows:

N

X[(exact), -(predicted),[
Average Error = ,=l (24)

N

Where "exact"' in the summation comes from the

evaluation of the exact function. The predicted values

in the summation come from the response surface

approximation at N interpolated points For this

example Nis set to equal to 441 and selected from

equally spaced points on a 21x21 square grid overlaid

on the domain. Earlier experience in reference 5

indicates the 21x21 grid appears to be sufficiently

dense to achieve adequate representation of the target

and approximate functions.

Four levels with 9, 13.25 and 41 points were selected

lbr comparison. For this example problem, the average

errors shown in the Ibllowing figures for kriging and

finite element interpolation are taken from reference 5.

z= Z
•_ Z

0.25 i _ .__ _ Z
_ .-I

0.2 rO ,-,'

_a_ 0.15

o.i!

0.05

0 ---

Figure 3. Average Errors in Two-Variables Problem

in Level-4 with 9 Sampling Points

Figures 3 to 6 show the average errors from levels 4 to

7. Since 9 points are not enough to fit a quadratic basis

function in MLS interpolation, a linear basis function is

used. Similarly the 9 points are not sufficient to fit the

Enhanced C-_-MNN and hence it is not shown in Figure
3. Finite element results for level-4 were not available

and are not shown in Figure 3.

6
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0.25 Z

02 _._ ) r

0 ---

Figure 4. Average Errors in T_o-Variables Problem

in Level-5 with 13 Sampling Poinls

0.25 z
Z

o.2 -

0.15 iml
•£ _ Z _" c_

_, 0.1 , _- ,,,, _. _,' _
"_ 0.05 _Z _

0 _ __la .-..

Figure 5. Average Errors in T_o-Variabmes Problem

in Level-6 with 25 Sampling Points

0.25 Z
Z

0.2 -_

_ 'E
0.15 _ E

W _ Z Z

_) 0.1 [ _ _ Z Z> ¢- .--< 005 .- _- - _ =

0 _ ...................
1

Figure 6. Average Errors in Two-Variables Problem

in Level-7 with 41 Sampling Points

From Figures 3 to 6, the following observations can be

made:

2. At lower number of sample points, level-4, all

the methods produce almost the same average

error,

3. In all the levels the GLS method consistently

performs poorly. This implies that the GLS

method should be avoided for response surface

generation,

4. All the piecewisc interpolation methods

including the finite element interpolation

methods perform better at all levels,

5. The locally weighted methods, kriging and

MLS, perform as well as the piecewise

interpolation method like the MNN method,

6. The C'-MNN method pertormed as well as C:-

MNN method at all levels,

7. All the methods with higher order derivative

continuity produce less error at all levels, and

8. The kriging and Enhanced C-'- MNN methods

produce the least error at Icvcl 7, closely

followed by MLS method.

Since it is easy to extend the kriging and MLS methods

for arbitrary number of variables, the two methods arc

compared separately in Figure 7. It can be concluded

from Figure 7, that MLS consistently produced

marginally smaller errors than kriging al all levels

except level-7 with 41 sampling points. However, since

the difference in error between the two methods is

small, there is no clear advantage of one method over

the other.

0.25

0.2 \ Krlging

_I-- D --MLS"' 0.15

° ',\•_ 0.1

< 0.05

0 10 20 30 40 50

Number of Sampling Points

Figure 7. Kriging and MLS Methods Comparison

for Two-Variables Problem

All the interpolation methods show reduced

average errors as the number of sampling

points increascs,

Four-Variables Problem:

The next example problem is taken from reliability-

based dcsign of a metal, plate-like wing to meet

strength and flutter requirements". The selected plate-

like wing configuration is shown in figure 9.

7
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The dimensions used for wingspan (L), wing root

chord (C/_), tip chord (C,), and sweep of the leading

edge (qb) are also show in Figure 9. The modulus of

elasticity is 10xl06 psi and Poisson's ratio is 0.30.

The wing is clamped at the root and subjected to a

uniform pressure of I psi.

!/
I

(", = 24m

L

I 4

6) = 14 l)egrt'e_
32

3/

t, / = 601n _l
|

vx

Figure 8. Dimension of Metal Plate-Like Wing

The thickness distribution along the span of the wing is
assumed as bi-linear and can be defined in terms of the

thicknesses of the corner nodes I to 4 (see Figure 8) as

l( 4, q ) = C I + C2_ "l- C37 _ + C4_ ?_ (25)

where

(t_ +t 2 +t 3 +14)
q = (26)

4

(-t I +t 2 +t 3-t 4)
c2 = (27)

4

(-t]-t 2 +t 3+t 4)
c3 - (28)

4

(lt -t2 +13 --14)
C4 = (29)

4

The equation relating the (x,y) and (_,r/) wing

coordinates (see Figure 8) can be written as

= 2L(x-ytanO) _1 (30)
C,.L - (C,. - C t )y

2y
'7 - 1 (3_

L

where -I<__<l,and -l_<r 1_<1

i Element I

--a.o!igi-,-_--_L

Element t62

Figure 9. Finite Element Model for Stress Prediction

The Iour corner node thicknesses (t I to t4) are the

design variables. Each thickness is allowed to vary

between 0.15in and0.4in. The sampling points are

generated using the PLS scheme for level-5 and level-7.

There are 97 PLS sampling points for level-5 and 881

PLS sampling points for level-7. In order to predict the

stress distribution as function of four design variables

(t I to t4), the plate is divided into 162 quadrilateral

finite elements as shown in Figure 9. Finite element

analyses with 162 quadrilateral elements arc used to
obtain the stresses at the centroids of each element. For

example, for the 881 sampling points in level-7, 881

finite element analyses are performed. These 881
cetroidal stresses lor an element are used to construct

the responses for that element. Hence, total of 162

response surfaces are constructed, one for each

element. The NASTRAN structural analysis code with

8-node quadrilateral elements is used for the finite

element analyses.

The 162 response surfaces (one for each finite element)

are generated using GLS, kriging, and MLS methods in

terms of the design variables l_ to 14 . The fitting of the

response surface with GLS and MLS is straightforward,

but, the kriging method requires some clarification. As

previously mentioned, the estimation of 0 in Equation

(4) using one-dimensional optimization is the critical

step in kriging. The variation of Maximum Likelihood

Estimate (MLE) with 0 is shown in Figure 10.

8
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-8000

-84OO 0

-8800

-9200

-9600

0

20 25 30 35 40 45 50

Figure 10. Variation pf Maximum Likelihood
Estimate (M LE) with Free Parameter 0

It can be seen from Figure 10 thai there is no absolute
maximum value of MLE. The MLE reaches the

maximum value at the default minimum value ot* 0 = 0

degrees. Thc matrix R in Equation (3) becomes

singular for 0--0 degrees. F(n the current problem

with 881 sample points, the determinant of the matrix

R becomes numerically nearly zero for 0_< 3. The

selection of 0 here then becomes highly subjective.
The value of 0 is set to 0=7 and 0=5 forlevel-5

and level-7 respectively. These /) values are selected,

since they produced accurate results.

To examine the fitting performance, 2500 randomly

selected thickness sets are used in Equation (23) to

obtain the average error. The average errors are
calculated for all the 162 elements. The stress values

obtained from the 25(X) NASTRAN analyses are used

as 'exact" in Equation (23). The average error for each

element is normalized by the average stress for that

element using

25' 0

exact stress

Mean Stress for an element = t
2500

The percent error is calculated as

(32)

%Error for an element =
Average Error

Mean Stress
×100 (33)

AIAA-2002-1466
Error

677_

655_
6 20

5 85

550

515

480

..... 445

4 10

375

340_

3 0511

2 7011

2.3511
2 03--

Figure 11. Average Error Distribution for GLS

Method Over the Wing Span

Error

tT_,!
I 68_

1 54

147

1 40

1,33

I 26

119

112

105; i

098

1) 91

0 84

083

Figure 12. Average Error Distribution for Kriging

Method Over the Wing Span

Error

024511

0.230_

0215_
0.200 _

0185:

0.170

0155

0140 i'

0125"

110;

00,_5E
008011

006511

0 050]]
0034"

Figure 13. Average Error Distribution for MLS

Method Over the Wing Span
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The distributions of average errors over the wingspan

are shown lbr GLS, kriging and MLS methods in

Figures I1 to 13. The relative differences in average
error |or the three methods are almost the same in each

element. As a representative example, the percent error

in Element I located near the root of the wing (see

Figure 9) is compared for the three interpolation

methods in Figures 14 and 15 for levels 5 and 7. For

level-5 with 91 points, the GLS produced 8.65 percent

error compared to 1.8 percent for kriging and 1.5

percent error for MLS. The corresponding values for

level-7 with 881 points are GLS=5.8 percent error,

kriging=l.7 percent error and MLS=0.58 percent error.

The kriging and MLS methods produce errors that are

an order of magnitude less than the GLS method.

Numerically the MLS produced the least error at both

levels. However, between kriging and MLS, it is

difficult to choose one over the other. Further study is
needed to draw definite conclusions.

Discussion

In the above two examples it was shown that the

performance of the kriging and MLS methods are

nearly the same. However, in kriging there is a need to

estimate the free parameter 0 through optimization. In

the MLS method there is no parameter to evaluate,

except to define the influence radius l,. The free

parameter l, is easy to select from the requirement of

the number of points to make the matrix A in Equation

(15) non-singular. It should be noted that the kriging

and the MLS methods are called locally weighted

interpolation rather than piecewise interpolation. It was

observed in the two variables example that the

piecewise polynomials produced small error at all the

levels. But these methods are available only for two

variables. Hence, piecewise polynomial methods lor

arbitrary number of dimensions would need to be

developed.

Concluding Remarks

The usefulness of Piecewise Polynomials with higher

order derivative continuity methods are studied and

evaluated for response surface construction. The

piecewise polynomials with higher order derivative

continuity (C 'i and C 2 continuity) methods produce

fewer errors for a given set of sample points than the

global least squares methods. The kriging and MLS

methods performed equally well and are easy to extend

to arbitrary numbers of design variables. However, it is

easier to fix the free parameters in the MLS method

than in the kriging method. There is a need to develop

or examine piecewise polynomial methods that can be

easily extended to arbitrary number of design variables.
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Figure 14 . Average Errors: Four-Variables

Problem With 97 Sampling Points
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Problem With 881 Sampling Points

Acknowledgement

The authors wish to thank Dr. Anthony A. Giunta,

Sandia National Laboratories, Albuquerque, NM, for

providing help in programming the kriging method and

also for the many technical discussions. The first author

wishes to thank Dr. I. S. Raju, Branch head, Analytical

and Computational Methods Branch (ACMB), NASA

Langley Research Center, Hampton, VA, for

introducing him to the Moving Least Squares method.

The first author also wishes to thank Dr. John Chen,

10

American Instituteof Aeronautics and Astronautics



AIAA-2002-1466

VehicleTechnologyDirectoraw- Army Research
Laboratory,NASA Langley ResearchCenter,
Hampton,for thetechnicaldiscussionson theMLS
method.

References

Stroud, W. Jefferson; Krishnamurthy, T.: and

Smith, Steven A.,'" Probabilistic and

Possibilistic Analyses of the Strength of a
Bonded", Joint. t_'esented at 42 "'t

AIAA/ASME/ASCE/AHS)'ASC Structures.

Structural Dwlamics, and Materials

Conference, AIAA Papel _o. 2001-1238, April
16-19, 2001, Seattle, WA. Available on

CDROM Vol 6, No. 2, AIAA, Reston, VA.

, Sundararajan. C., "Pr, d_abilistic Structural

Mechanics Handbook" Chapman & Hall,
1995.

3. Myers, H., R., and Montgomery, C., D.,

"'Response Stoface Methr_dolov", a Wiley-

Intcrscience Publication John Wiley & Sons,
Inc., 1995.

4. Romero, V. J., Swiler, 1_.P., and Giunta, A.A.,

"Application of Finite Element, Global

Polynomial, and Krigin,,, Resposnse Surfaces

in Progressive Lattice Sampling Designs", 8 '1'

ASCE Specialty Conference on Probabilistic

Mechanics attd Structural Reliability, PMC
2000-175, 2000.

5. Romero, V.J., and Bank,,,t,m, S.D., "Finite-

Element/Progressive-Laltice-Sampling

Response Surface Meth¢,dology and

Application to Benchmark Probability

Quantification Problems", Sandia National

Laboratories report SANI)98-0567, 1998.

6. Nielson, G, "Minimum Norm Interpolation in

Triangle", SIAM J. Nuo,er. Anal. Vol. 17, pp.
44-61, 1980.

7. Nielson, G, " The Side-Vertex Method tor

Interpolation in Triangle", Jl. of

Approximation Theoo', Vol. 25, pp. 318-336,
1979.

8. Pottmann, H., "Scattered Data Interpolation

Based upon Gencralizcd Minimum Norm

9.

I0.

I1.

12.

13.

14.

15.

Networks", Constructive Approximation, Vol.

7, pp. 247-256, 1991.

Alfeld, P., and Barnhill, R. E., "A transfinite C:

Interpol ant over Triangles". Roek_' Mountain

Journal of Mathematics. Vol. 14, pp. 17-39,
1984.

Aminpour, M.A., Krishnamurthy, T. and Fadale,

T.D., "Coupling Independently Modeled Three-
Dimensional Finite Element Meshes with

Arbitrary Shape Interface Boundaries,"

Proceedings _[" 39th
A IAA/A SME/ASCE/A HS/A SC Structu res,

Structural Dynamics, and Materials Cot!ference,

Long Beach, CA, Part 4, pp. 3014-3024. 1998.

Stroud, W. Jefferson, Krishnamurthy, T., Mason.

B. H , Smith, S. A., and Naser, S. Ahamad,'"

Probabilistic Design of a Plate-Like Wing to

Meet Flutter and Strength Requirements", To be
Presented at 43'"' AIAA/ASME/ASCE/AHS/ASC

Structures. Structural Dynamics, and Materials

Col!]'erence, AIAA Paper No. 2002-1464, April

22-25. Denvel, CO. 2002.

Giunta, Anthony A., and Watson, Layne T., "" A

Comparison of Approximation Modeling

Techniques: Polynomial versus Interpolating

Models", paper AIAA-98-4758 presented at the

7" AIAA/USAF/NASA/ISSMO Symposium on

Multidisciplinarv Analysis and Optimization, St.

Louis, MO, Sept. 2-4, 1998.

Atluri, S N., and Zhu, T.,"A new meshless Local

Petrov-Galerican (MLPG) approach in

Computational Mechanics", Computational

Mechanics, Vol. 22, pp. I 17-127, 1998.

Raju, I. S., and Chen, T.," Meshless Petrov-

Galerkin Method Applied To Axisymmetric
Problems", 42 ''I AIAA/ASME/ASCE/AHS/ASC

Structures, Structural Dynamics. and Materials

Conference, AIAA Paper No. 2001-1253, April
16-19, Seattle, WA, 2001.

Choi, K.K. Youn, B., and Yang, R-J. "Moving

Least Squarcs Method for Reliability-Based

Design Optimization," Fourth World Congress

of Structural and Multidisciplina O' Optimization,
Dalian, China, June 4-8, 2001.

11

American Institute of Aeronnutics and Aslronautics




